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THE GREENHOUSE EFFECT
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ATMOSPHERIC
RADIATION

Power per area

Energy per time per
area

Unit:
Watt per square meter
W m-2



STEFAN - BOLTZMANN RADIATION LAW
Emitted thermal radiative flux from a black body

F T= σ 4

F = Emitted flux, W m-2

T = Absolute temperature, K

σ = Stefan-Boltzmann
constant, W m-2 K-4
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Stefan-Boltzmann law “converts” temperature to radiative flux.



GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square meter

Schwartz, 1996, modified from Ramanathan, 1987

stepheneschwartz


stepheneschwartz


stepheneschwartz
Stefan-Boltzmann radiation law



RADIATIVE FORCING

A change in a radiative flux term in Earth’s radiation
budget, ∆F, W m-2.

Working hypothesis:
On a global basis radiative forcings are additive and
fungible.

• This hypothesis is fundamental to the radiative
forcing concept.

• This hypothesis underlies much of the assessment of
climate change over the industrial period.
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ATMOSPHERIC CARBON DIOXIDE IS INCREASING

Global carbon dioxide concentration and infrared radiative forcing 
over the last thousand years

Polar ice cores
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CLIMATE FORCINGS OVER THE
INDUSTRIAL PERIOD
Extracted from IPCC AR4 (2007)

3210-1-2
Forcing, W m-2

CO2 CH4
CFCs

N2O
Long Lived

Greenhouse Gases

Greenhouse gas forcing is considered accurately known.
Gases are uniformly distributed; radiation transfer is well understood. 



GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square meter

Schwartz, 1996, modified from Ramanathan, 1987
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GLOBAL ANNUAL TEMPERATURE
ANOMALY, 1880-2010
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HOW MUCH WARMING IS EXPECTED?

Equilibrium change
in global mean

surface temperature
= Climate

sensitivity × Forcing

∆T S F= ×

S is equilibrium sensitivity. Units: K/(W m-2)

Sensitivity is commonly expressed as “CO2 doubling
temperature”

∆T S F2 2× ×≡ ×

where F2× is the “CO2 doubling forcing” ca. 3.7 W m-2.



ESTIMATES OF EARTH’S CLIMATE SENSITIVITY
AND ASSOCIATED UNCERTAINTY

Major national and international assessments and current climate models
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Current estimates of Earth’s climate sensitivity are centered about a CO2
doubling temperature ∆T2× = 3 K, but with substantial uncertainty.

Range of sensitivities of current models roughly coincides with IPCC
“likely” range.



HOW MUCH WARMING IS EXPECTED?

For increases in CO2, CH4, N2O, and CFCs over the
industrial period

F = 2 6.  W m-2

Expected temperature increase:

∆ ∆T
F

F
Texp

.

.
= × = ×

×
×

2
2

2 6
3 7

3 K = 2.1 K

Observed temperature increase:

∆Tobs  K= 0 8.
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AEROSOL IN MEXICO CITY BASIN



AEROSOL IN MEXICO CITY BASIN

Light scattering by aerosols decreases absorption of solar radiation.



AEROSOLS AS SEEN FROM SPACE

Fire plumes from southern Mexico transported north into Gulf of Mexico.



CLOUD BRIGHTENING BY SHIP TRACKS
Satellite photo off California coast

Aerosols from ship emissions enhance reflectivity of marine stratus.



ESTIMATES OF AEROSOL DIRECT FORCING
By linear model and by radiation transfer modeling
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Global average sulfate optical thickness is 0.03: 1 W m-2 cooling.

In continental U. S. typical aerosol optical thickness is 0.1:  3 W m-2 cooling.
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AEROSOL OPTICAL DEPTH AT ARM SGP
Fifteen years of daily average 500 nm AOD in North Central Oklahoma

Michalsky, Denn, Flynn, Hodges, Kiedron, Koontz, Schlemmer, Schwartz, JGR, 2010

Green curve is LOWESS (locally weighted scatterplot smoothing) fit.



GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square meter

Schwartz, 1996, modified from Ramanathan, 1987
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CLIMATE FORCINGS OVER THE
INDUSTRIAL PERIOD
Extracted from IPCC AR4 (2007)
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Greenhouse Gases
Tropospheric

Aerosols
Direct
Effect

Cloud Albedo
Effect

Total Forcing

Total forcing includes other anthropogenic and natural (solar) forcings.
Forcing by tropospheric ozone, ~0.35 W m-2, is the greatest of these.
Uncertainty in aerosol forcing dominates uncertainty in total forcing. 



THE PATH FORWARD
Determine aerosol forcing with high accuracy.

Multiple approaches are required:

Laboratory studies of aerosol processes.

Field measurements of aerosol processes and properties:
emissions, new particle formation, evolution, size
distributed composition, optical properties, CCN
properties, removal processes . . .

Represent aerosol processes in chemical transport models.

Evaluate models by comparison with observations.

Satellite measurements for spatial coverage.

Calculate forcings in chemical transport models and GCMs.

Measurement based determination of aerosol forcings.



AEROSOL PROCESSES THAT MUST BE
UNDERSTOOD AND REPRESENTED IN MODELS
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Modified from Ghan and Schwartz, Bull. Amer. Meterol. Soc., 2007



APPROACH TO DETERMINE
AEROSOL FORCING

Numerical simulation of physical processes

Isomorphism of processes to computer code
Modeling aerosol processes requires understanding these processes,
developing and testing their numerical representations, and 
incorporating these representations in global scale models.
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